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Quantum state certification
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Certification

• Measure H with {|ψ〉〈ψ|, I− |ψ〉〈ψ|}
• If result is |ψ〉 for every H , then most of the remaining

positions are in state |ψ〉 with overwhelming probability
[BF10].

• The reference state |ψ〉 must be pure.
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What about certifying mixed states ?

Usual approach fail
Notion of typical subspace not applicable

Xsample = 00 . . . 0 Pr≈1
=⇒ Xrest ∈ {x : x has less than δn 1s}

• For pure states∣∣ψsample
〉

= |0〉⊗k Pr≈1
=⇒ |ψrest〉 ∈ span{|x〉 : x has less than δn 1s}

• For some mixed states ϕ,

supp(ϕ⊗n) = H⊗n

No local measurement for a discrete notion of errors
for mixed states
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A mixed state certification protocol

Possible to verify that a qubit is in state ϕ if we
have access to its purifying register.

Two-player «Game»

Verifier wants to certify that his state is close to ϕ⊗n.
Prover wants to fool the verifier into thinking he has the right
state even though it’s not the case.

P. Prepare |ϕ〉⊗nAR , send An to verifier.
V. Choose a random sample, announce it to prover.
P. Send R for each position in sample.
V. Measure {|ϕ〉〈ϕ|AR , I− |ϕ〉〈ϕ|AR} for each joint system AR in

sample.
V. Accept if no errors, reject otherwise.
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A few observations about the protocol

Interaction is necessary
How can you distinguish(

|0〉〈0|
2

+
|1〉〈1|
2

)⊗n
from

≈n/2 times︷ ︸︸ ︷
|0〉|0〉 . . . |0〉

≈n/2 times︷ ︸︸ ︷
|1〉|1〉 . . . |1〉

Interaction gives more power to prover

P.
V.

Abort/continue

1. Learns sample

2. Measures qubits

3. Aborts based on result

Example

Prepare 1√
2

(|00〉+ |11〉)⊗n,
measure positions outside of
sample, abort if result 6= |0〉⊗n−k .

Resulting state always |0〉⊗n−k
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What can the prover do ?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,

• prepare a mixture/superposition of such states,

• purify this mixture, and

• post-select on a measurement outcome.
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The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output
state ρAn satisfies

ρAn ≤ pn · ψAn + σ

where pn is a fixed-degree polynomial in n, ψAn is the reduced
operator of an ideal state |ψ〉AnRnE and tr(σ) ≤ negl(n).

Application to Cryptography

For any POVM operator Ebad of a “bad” outcome,
tr
(
EbadρAn

)
≤ pn · tr

(
EbadψAn

)
+ negl(n)

Bad outcome on real state has negligible probability if
tr(EbadψAn) is negligible.
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Generalisations and special cases

Sufficient conditions
Invariance under permutations. Equivalent to protocol where
verifier permutes his registers with random π and announces π to
the prover.
Behaves well on “easy” state. The verifier detects any cheating
attempt with overwhelming probability on a state of the form σ⊗n

for σ distant from reference state ϕ.

Corollary
Theorem implies security of
• a local measurement certification protocol for ϕ = I

2 ,

• pure state certification [BF10], and

• a “distributed” pure state certification protocol [DDN14] not
covered by [BF10].
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Application : secure two-party randomness
generation
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Secure Two-Party Randomness Generation

Goal

Produce XA,XB ∈ {0, 1}n such that

• XA = XB if Alice and Bob are both honest,

• H∞(XA) ≥ (1− ε)n and H∞(XB) ≥ (1− ε)n except with
negligible probability.

Protocol

• Alice prepares |Ψ〉⊗NAB and sends BN to Bob.

• Bob certifies that most of his registers are close to I
2 .

• Alice and Bob measure their remaining n registers.

Our main result ensures that the measurement
outcome will have near maximal min-entropy
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Thank you !
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