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The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output
state pan satisfies

par < Pn - Yan + 0

where p, is a fixed-degree polynomial in n, ¥ 4n is the reduced
operator of an ideal state |¢)) 4ngng and tr(o) < negl(n).

6/8



The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his
satisfies
< Pn-than +o0
where p, is a fixed-degree polynomial in n, ¥ 4n is the reduced
operator of an ideal state |¢)) 4ngng and tr(o) < negl(n).

6/8



The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output
state pan satisfies

pAr < pn-Yan+o

where p, is a fixed-degree polynomial in n, ¥ 4n is the reduced
operator of an ideal state |¢)) 4ngng and tr(o) < negl(n).

6/8



The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output
state pan satisfies

pan < pn - Yan + 0
where , Yan is the reduced
operator of an ideal state |¢)) 4ngng and tr(o) < negl(n).

6/8



The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output

state pan satisfies
PAn < Pn +o

where p, is a fixed-degree polynomial in n,
and tr(o) < negl(n).

6/8



The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output
state pan satisfies

PAn < Pn - Pan +

where p, is a fixed-degree polynomial in n, ¥ 4n is the reduced
operator of an ideal state |¢) 4ngng and

6/8



The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output
state pan satisfies

par < Pn - Yan + 0
where p, is a fixed-degree polynomial in n, ¥ 4n is the reduced
operator of an ideal state |¢)) 4ngng and tr(o) < negl(n).

Application to Cryptography
For any POVM operator E?29 of a “bad” outcome,
tr (EbadpAn> < p,-tr (Ebad1/zAn) + negl(n)

Bad outcome on real state has negligible probability if
tr(EP294)40) is negligible.

6/8



The mixed state certification Theorem

Main Result
For any strategy of the prover, if the verifier accepts, his output
state pan satisfies

pAr < pn-Yan+o
where p, is a fixed-degree polynomial in n, ¥ 4n is the reduced
operator of an ideal state |¢)) 4ngng and tr(o) < negl(n).

Application to Cryptography
For any POVM operator E?29 of a “bad” outcome,
tr (EbadpAn> Pn - tr (Ebad1/zAn) + negl(n)

Bad outcome on real state has negligible probability if
tr(EP294)40) is negligible.

6/8



Generalisations and special cases

Sufficient conditions

Equivalent to protocol where
verifier permutes his registers with random 7 and announces 7 to
the prover.
Behaves well on “easy” state. The verifier detects any cheating
attempt with overwhelming probability on a state of the form o®"
for o distant from reference state .
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Application : secure two-party randomness

generation



Secure Two-Party Randomness Generation

Goal
Produce Xa, Xg € {0,1}" such that

e X, = Xp if Alice and Bob are both honest,
e H (Xa) > (1 —€)nand H (Xg) > (1 — €)n except with
negligible probability.
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Thank you!
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